

Experience with Plastic Part Evaluations At Cold Temperatures

NASA Electronic Parts and Packaging Program

May 15-16 2001

AGENDA

The work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

°C	°K	°F
0	273.2	32
-55	218.2	-67
-105	168.2	-157
-125	148.2	-193
-175	98.15	-283

INTRODUCTION

- Missions to MARS/planets/asteroids require electronic parts to operate and survive at extreme cold conditions.
- At extreme cold temperatures many types of cold related failures can occur.
- Office 514 is currently evaluating plastic parts under various cold temperature conditions and applications.
- Evaluations, screens, and qualifications are ongoing on flight parts.

TIMELINE OF COLD TEMPERATURE TEST ACTIVITIES

- Part performance outside specifications Now
- Temperature cycling Now
- Thermal shock Now
- Cold temperature startup Future
- Extended low temperature operating life Future
- Cold temperature device modeling Future
- Power/temperature cycling Future
- Long term cold storage Future

COLD TEMPERATURE ACTIVITIES

Areas requiring further investigation that can impact part reliability under cold temperatures:

- Material properties & characteristics
- Physics/operation of semiconductor devices
- Wafer Processing/Component Assembly
- Manufacturing/Lead Type
- Stress Induced Latent Damage

TEMPERATURE REQUIREMENTS

(OP/NOP Example)

Allowable Flight	Qualification	Flight Acceptance		
-105°C minimum	-125°C minimum	-110°C minimum		
Part Test/Eval	Part Test/Eval	Part Test/Eval		
-115°C minimum	-135°C minimum	-120°C minimum		
Part Accept	Part Accept	Part Accept		
-110°C minimum	-130°C minimum	-115°C minimum		

EXAMPLES OF PERFORMANCE IMPROVEMENTS NEAR LN₂ TEMPERATURES

- Copper is seven times more conductive
- Chip performance equates to reducing chip geometry by 2X
- Devices may operate faster because Cj decreases and μ increases
- Interconnection delays times are reduced
- Sharper signal transitions allow faster clock rates
- Memory chips consume less power & require fewer refresh cycles
- Thermal management is easier

Cold Temperature Capabilities

-195°C Cold Test Evaluation Chamber

-180°C Liquid Nitrogen Bath

-125°C Cold ATM Digital Tester

IN DEVELOPMENT

-125°C Cold Linear Tester

Performance

SCREENING/QUALIFICATION METHODS USED At COLD TEMPERATURES

GRADE EVALUATED

EXPECTED YIELD

EXPECTED OUTCOME

Commercial 0 to + 70C

Low

High No. of Outliers, Large Degradations

Industrial -40C to +85C

Medium

Medium No.of Outliers, Some Degradations

Military -55C to +125C

High

Few Outliers, Few Degradations

Acceptable parts must be within 10-20% of lot parametric distributions at temperature, while accepted lots must yield at least 50% upon completed screening. Qual lots must pass 100%.

COLD TEMPERATURE TEST RESULTS COTS SRAMS

Case I

Performance

COTS SRAMS have been evaluated by JPL at military temperature range:

Results:

Three different parts from three different vendors passed.

COLD TEMPERATURE TEST RESULTS PROGRAMMABLE COTS OSCILLATORS

Case I-A

Hermetic Package

Performance

	·		Powered and Measured by the HP E3612A DC Power Supply. All current readings are in mA.				
Voltage	Part No	Programmed Frequency (MHz)	-55C	-40C	25C	80C	125C
5.0	1	32.0000	27	27	27	27	27
5.0	2	66.0000	22	22	22	22	22
5.0	3	99.0000	41	40	38	35	33
5.0	4	133.0000	36	35	31	29	27
3.3	6	25.0000	28	27	24	22	21
3.3	7	50.0000	11	10	11	9	9
3.3	8	75.0000	18	18	18	17	17
3.3	9	100.0000	22	22	20	19	18

COLD TEMPERATURE TEST RESULTS - COTS UPSCREEN

Case I-B

(Examples)

Performance

Part A Ios Range @ -65C

Part A Isc Range @ -65C

Note: Some devices exhibit more variations and divergence at cold temperatures. Devices >10% from norm are rejected.

TEST RESULTS COTS UPSCREEN

Case II

Temperature Cycle

Part A Summary: 627 flight parts (PEMs) passed 10 cycles to the above requirement. 20 samples are being qualified to 300 cycles using the same T/C profile.

FAILURE ANALYSIS

Temperature Cycle

Case II-A

Oxidation of soldered leads were suspect since the lead surface became dull after T/C and bright after burnishing.

BEFORE

AFTER

5,000X SEM micrograph showing a closeup of the Pb/Sn solder coating on a lead in S/N A. The solder appears to have recrystallized after 10 cycles, resulting a roughening of the surface. Energy dispersive x-ray spectroscopy analysis of the surface revealed only the presence of Pb and Sn. Similar analysis of the pre-temperature cycled device also found only Pb and Sn. There is no apparent solderability problem.

TEST RESULTS for COTS PEMS

Thermal Shock

Case III

Test Conditions: 30 cycles from –185° C to +135° C liquid bath

Sample 1	PASSED
----------	--------

Sample 2 FAILED

Sample 3 PASSED

Sample 4 PASSED

Sample 5 PASSED

Sample 6 FAILED

Sample 7 PASSED

Miniature Cracks Found

SUMMARY

- -Many CMOS commercial devices evaluated beyond their lowend rated temperature ranges have done quite well.
- -Plastic packages have held up under low temperature cycling but show signs of cracking under low temperature shock conditions.
- -Future work is planned to examine long term cold environmental effects such as cold start and operating life degradation.
- -Additional cold temperature test equipment is under development and evaluation.
- -Various part types are planned for reliability evaluation near LN_2 conditions under very long test times.